
Profile of NASA Software Engineering:

Lessons Learned from Building the Baseline

N94- 36500

f

Eighteenth Annual Software Engineering Workshop

2 December 1993

Goddaxd Space Flight Center

Dr. Dana Hall

Science Applications International Corporation

and

Frank McGarry

NASA Goddard Space Flight Center

5/6 -c/

It is critically important in any improvement activity to first understand the organization's

current status, strengths, and weaknesses and, only after that understanding is achieved,

examine and implement promising improvements. This fundamental rule is certainly true

for an organization seeking to further its software viability and effectiveness. This paper

addresses the role of the organizational process baseline in a software improvement effort

and the lessons we learned assembling such an understanding for NASA overall and for the

NASA Goddard Space Flight Center in particular. We discuss important, core data that

must be captured and contrast that with our experience in actually finding such information.

Our baselining efforts have evolved into a set of data gathering, analysis, and cross-

checking techniques and information presentation formats that may prove useful to others

seeking to establish similar baselines for their organization.

Role of the Baseline in Process Imorovement

We use the term "baseline" to mean a relatively detailed understanding of the software

engineering products, processes, and environment characteristic of an organization, large

or small, in a given period of time. It is a snapshot of current product attributes and of

present software engineering processes and the environment within which those processes

operate. The fundamental objective is to gain understanding and not to judge that the way

the organization performs its software development, maintenance, management, and

assurance is right or wrong. This understanding is then used in two principal ways; first,

llO, ie P.AG£ BLANK

SEW Proceedings

NOT F11._

401 SEL-93-003

to help identify and define potential improvements and, second, to serve as a reference

against which future comparisons are made as candidate improvements are prototyped and

implemented.

Establishing the baseline is the mandatory fast step of any process improvement program.

Determining the organization's software and software engineering characteristics before

proposing and trying an improvement requires discipline. It is reasonably analogous to the

discipline required to first understand a software problem's requirements and design before

jumping in to write code. Although some random "improvements" might prove correct,

experience has repeatedly shown that most are off the mark and are almost always short

lived, frustrating, and wasteful of people's interest and resources. Thus, it is very

important that the time and energy be taken to first gain insight and to understand the

what's, how's, and why's of an organization's way of doing software business.

The understanding step provides the foundation for all of the process improvement

program. The figure on page 4 illustrates the iterative and chronological relationship

between the three fundamental steps of the basic process improvement paradigm. The

Figure shows that gaining understanding precedes and then parallels the assessing and

packaging steps. Examples of the types of insight comprising the understanding step are

shown and will be further discussed below. Note that the understanding process is never

completed. It continues on through repeated cycles of update as well as probing into lower

levels of detail when and as needed to facilitate focused assessing and packaging. The

assessing step uses the insight gained from the understanding activities to identify and

define focused improvements that appear to be beneficial and cost-effective. The assessing

activity includes prototyping and experimentation. Examples of such experiments are

trying an improved inspections process or alternate testing technique. Those improvements

that do prove helpful are then packaged as policies, standards, or guidebooks for

promulgation back into the organization. Over time and with continued attention, the

modifications become a routine part of the organization's software culture and the

fundamental software engineering baseline of the organization thus will have advanced.

The figure on page 4 also helps to show that policies, standards, and guidebooks evolve

from hands-on experience and usage. As a result of actual implementation in the culture of

the organization, the policies, standards, and guidebooks serve as a means for

communicating and helping to achieve greater uniformity. The people in the organization

own and recognize the "rules" as simply their way of doing business. Experience has

2

SEW Proceedings 402 SEL-93-003

shown that this bottoms-up process is much more effective and useful than is adopting or

tailoring a process fi'om another organization or from some top-down mandate.

Core Data You Want to Capture

The organization's software characteristics baseline consists of four categories of

information. These categories axe:

1. Insight about the organization's application domain(s)

2. Characteristics of the end items; i.e., the products and/or services the

organization provides

3. Attributes of the precess(es) the organization uses

4. Insight about the organization's environment; i.e., its supporting tools and

computing and networking inflastructure.

The figure on page 6 presents the core data that comprise these four information categories.

This is the basic data you want to find in order to achieve a first order understanding of the

organization and its software practices. Most fundamentally, insight is required about what

the organization's application domain or domains are. In other words, what does the

organization do, what people and budget resources does it have, and where is the

organization trying to go (what are its goals?). Software development and maintenance

often are only a part of its purpose so insight must be gained about the organization's

overall roles and its software work as a subset of those roles. Further, since many

organizations perform work in more than one domain, understanding must be gained about

the allocation of resources across those domains.

Using the knowledge of the organization's application domain(s) as a foundation, insight is

then gathered about the its products, processes, and computing environment.

Product insight is most readily quantifiable. The amount of software under development

and the amount being maintained, languages in use, and error characteristics of the

operational software are examples of key product attributes. As illustrated on page 7, we

learned in our baselining activities at the NASA Cooddard Space Flight Center (GSFC) that

of the total civil service and support conwactor population (a community of some 12,000

people), roughly one third spend the majority of their time doing software engineering-
t! - • tt

related work. By software engineering-related, we mean performing one or more of the

3

SEW Proceedings 403 SEL-93-003

functions of software management, requirements definition and analysis, design, coding,

testing, configuration management, and quality assurance. That community is responsible

for the maintenance of at least 43 million source lines of presently operational code. We

have found that across NASA all software activity groups into one of six major application

domains: flight/embedded software, mission ground support software, general support

software, science processing software, administrative software, or simply (for lack of a

better title) research software. The distribution of existing operational software at the GSFC

into the major NASA software application domains is shown in the figure on page 8. By

way of definition, mission ground support software is the ground software necessary for

the preparation and conduct of a space flight mission. Examples are command management

software and software for determining vehicle orbital position. General support software

includes engineering models, simulations, tools, and similar operational software. While

pie charts are a useful analysis aid, other formats are also helpful. The graphic on page 9

uses a histogram format to show some of our baseline about software language preferences

at the GSFC. This particular figure compares the language characteristics of currently

operational software and the preferences of the developers of new software. (Neither the

GSFC overall nor any of the organizations that comprise the space center have mandated or

advocated a software language or set of languages. Each developer or project typically

selects the language they prefer.) It is interesting to note the sharp decrease in FORTRAN

use and the significant increase in the preference for C and C++. (Our baselining did not,

unfortunately, distinguish between C and C++. We may look more specifically into the use

of those two languages in the near future.) Ada use has grown at GSFC, but not to a

prominent amount.

An organization's process characteristics may prove more difficult to determine. The

availability of such insight in any reasonably quantified way is, in our experience, a good

indicator of the organization's software engineering maturity. The managers of an

organization with immature software engineering practices ate not able to easily describe

and prove usage of their policies and standards, the usual allocation of resources by

software phase, tools used and the usefulness to the organization of those tools, or other

key process attributes such as frequency and characteristics of reviews, staff training

practices, and project software configuration control activities. An example of

understanding an organization's process characteristics is shown in the schematic of page

10. This graphic portrays the usual GSFC software project's consumption of resources by

each of the major phases that make up the software development process. This figure is

presented here simply as an example of process insight, but it is also an interesting figure to

4

SEW Proceedings 404 SEL-93-003

briefly discuss. We found this allocation of resources to be roughly constant at GSFC

regardless of activity development approach or size. While we have, for simplicity of

presentation, mapped resource usage into a classical, one pass software development

model, many projects at GSFC @specially the smaller ones) develop their software through

an iterative, build-it and try-it approach. Almost invariably, these one person and small

team efforts claimed not be following any particular development model and certainly not to

be doing anything as formal as "requirements definition", but in reality, we observed that

their work processes do cycle through the basic four phases, albeit in an informal, less

structured way. So, our baselining indicates that the resource usage summarized by the

schematic on page 10 is fairly typical of most software work at the GSFC.

A fundamental rule associated with establishing an organization's software engineering

practices baseline is to not judge during the baselining process whether an observed

practice is good or weak. The objective is simply to observe and record. One of several

classical software engineering rules of thumb, for example, says that the front end

requirements and design processes should receive 40 percent of the development resource

budget while coding receives 20 percent, and testing the remaining 40 percent. GSFC

software work varies some from that guidance. We do not at this stage argue or even

examine whether some alternate resource pattern might be more effective for the typical

GSFC software effort. However, comparisons such as this help to highlight further

exploration to be done during the subsequent Assessing phase.

The fourth area of required insight concerns the organization's computing environment.

This part of the baselining focuses on attributes such as the types of computers available,

how networked the organization is, and how integrated are its software tools. An objective

is to measure the organization's computing environment relative to the current state of

practice generally in place across the software industry and to identify and characterize

constraints that limit the organization's ability to continually or periodically upgrade. Aside

from budgetary pressures, a constraint in the GSFC environment, for example, is the large

quantity of ctmently operational software that must be maintained. Taking care of that

installed base of some 43 million source lines of code inhibits the modernization of much of

the computing infrastructure. We noted, as a consequence, continued reliance on

centralized processing and limited introduction of more recent advances such as client-

server architectures and powerful desktop computers. Understanding the organization's

constraints with respect to its computing environment helps to set the practical context

within which incremental improvements are possible.

5

SEW Proceedings 405 SEL-93-003

What Data Can Be Canmmd?

While a core of dam is cridcalas the foundation for an organization's software engineering

improvement baseline, the reality is that often much of even that core data is not available.

This is especially the case in an organization whose software engineering practices are

relatively immature. Immature is meant as a descriptor of organizations where software

engineering practices are largely driven by individual preferences, where little or no

organized measurement is performed, and where there is little uniformity and sharing

across the organization. The Software Engineering Institute at Carnegie Mellon University

labels such organizations as 'level 1" in its five level capability maturity model.

Establishing a baseline is an incremental process in and of itself. As the figure on page 4

emphasized, understanding begins as the first step and then is a process that continues in

parallel as the organization experiments with and implements focused improvements. The

data gathering process is one of iteratively gaining sufficient insight to identify and define

promising improvements. Detailed accuracy and depth are not necessarily needed at least

initially for the organization-wide baseline. As candidate improvement areas are identified,

however, more indepth probing will usually help to understand weaknesses and to shape

the nature of candidate changes. More will be said a little later in this paper about the

balance between resources put into the baselining process and the level of depth and

accuracy of the baseline.

In our GSFC and NASA-wide baselining work, we have been reasonably successful

gathering insight about software languages in use, budgets, and quantities of software (as

measured by lines of code and people involved). We estimate that our results for these

types of measures are accurate within 25 percent of the true amounts. Twenty five percent

is admittedly a wide margin, but it is adequate for our software process improvement needs

at this early stage in the NASA Software Engineering Program. We have not been as

successful identifying other less tangible core data. Examples of such data include effort

distribution by phase, the operational lifetime (longevity) of software, error statistics of any

kind, productivity measures, and the anaount of resources typically invested in the key

"overhead" functions of software quality assurance, configuration management,

documentation, and project management. As discussed later in this paper, we believe that

we have directly or indirectly gathered data from about ten percent of the GSFC software

community. Very few of the managers and staff with whom we interacted had any

6

SEW Proceedings 406 SEL-93-003

quantified data pertaining to these less tangible measures. Most could offer only qualitative

guesses. While such insights are probably better than no insight at all, we put a wide

margin of error of 50 percent on that subset of our characteristics baseline. The point of

this discussion is to emphasize that although a core family of process attributes are

important to your understanding baseline, practical circumstances may dictate that you

settle, at least in the early stages of an improvement program, for approximations and

opinions for some of the desired data.

Techniques for Establishing the Baselj_.g

We have found over the past year and six months that a combination of four methods

works best to gather, cross-check, and understand the software domains, products,

processes, and environment characteristic of a subject organization. The four techniques

that comprise our integrated data gathering mechanism consist of administered survey

vehicles, informal roundtables, review of selected project data and documentation, and one-

on-one interviews. These techniques reinforce each other. Our experience indicates that all

four are necessary in order to truly understand the what, how, and why of an

organization's software business.

Surveys are a key instrument. We developed, tested, and placed under configuration

control a comprehensive eight page survey and a single page, special subset. The single

page version was used in two ways. One application was to help introduce our purpose to

senior management, garner their support and approval, and elicit their insight about the

software engineering process in their organization. The other way we used the single page

version was as a verification mechanism with various individuals throughout the

organization that had not been interviewed using the longer survey.

The eight page, main survey was widely applied. We found the most effective

administration method to be a technique similar to that of a census-taker. At a pre-arranged

meeting time and location, our data gatherer met with the single or occasionally several

respondents. After introductions, a short explanation would be given of the NASA

Software Engineering Program and the role of the characteristics baselining activity within

that Program. The data gathering meeting would then proceed in the style of a question and

answer session using the survey as the central script. A simple "don't know" or "not

available" was entered as the response for those questions where the respondent could not

7

SEW Proceedings 407 SEL-93-003

easily answer. We had structured our questions so that a knowledgeable respondent would

not need to invest time researching and compiling answers. Typically, the data gathering

session consumed about 1.5 hours, although related discussions would sometimes extend

the duration. This method of meeting with the respondent and walking down through the

survey not only used minimal time, but also assured us of data return and data

mt_etation consistency. Since we usually used only one and occasionally two data

gatherers, we were able to maintain a relatively consistent interpretation and level of detail.

Earlyinour baselining,we triedand discardedeasieR"techniquesthatreliedupon survey

mailoutsand telephonecalls.

Prototyping of the survey mechanisms proved very important. Such testing helped identify

confusing questions, inconsistent definitions, and to polish our gathering techniques. We

found, for example, that entries for descriptive data introduced too much variability and

thus complicated our data reduction job. A more effective approach was to only use

questions with definitive answers such as yes/no or response ranges (for example, <35%,

35-70%, or >70%).

The roundtablesessionswere used tohelpcheck theinsightsgatheredfrom the

administeredsurveysand togathermore subjectiveopinionsand advice.The roundtablcs

were conductedusinga structuredsetoffivemajor questions;specifically:

1.Participantbackground and experience?

2.Businessgoalsand objectivesoftheorganization?

3.What softwareprocessisused?

4.Major strengthsand weaknesses indevelopingsoftware?

5.What couldbe done toimprove thesoftwareengineeringprocessinthe

organization?

Separate roundtables were conducted for managers and technical personnel and for civil

servants and support contractors so that each set of participants could speak more freely.

As with the survey and interview results, we have taken care to protect the privacy of the

responses. In no case have observations been attributed back to individual participants.

While our surveyadministrationmethod was inrealitya one-on-oneoroccasionallyone-

on-two interview,we alsoused theinterviewtechniqueprincipallyasa means ofpursuing

insightthatappeared,afteranalysisand comparison,tobe contradictoryorinsome way

particularlydifferentfrom what wc were learningwas thenorm intheorganization.

SEW Proceedings 408 SEL-93-003

Resource practicalities obviously precluded talking with every member of the software

community so we tried to orient our data gathering energy to the major "pockets" of

software work. Senior management proved very helpful in pointing to those software

intensive groups within the overall organization, but our knowledge of NASA was also

key. This brings up another valuable lesson. It is our opinion that the software engineering

baselining process can only be done by individuals familiar with the target organization and

its culture. That insight has proven highly important to our efforts at interpreting

terminology, understanding roles and functions, and interpolating and extrapolating the

data samples to represent the overall GSFC and NASA software communities. We do not

believe that we would be very effective if we attempted to conduct this critical activity in

unfamiliar domains or, conversely, if someone not familiar with NASA tried to conduct a

NASA software baselining.

How Many People Should You Talk To?

No easy answer can be provided to this question. The amount of interaction depends upon

the variability within the organization of interest and on its software engineering process

maturity. The problem of sample size is probably amenable to statistical analysis. We have

relied upon our extensive NASA experience base as our primary guidance for determining

our sample size. As the graphic on page 13 shows, we sampled approximately ten percent

of the GSFC software community and from that sample size, believe we have extracted

insight sufficient to both guide our next round of focused improvement thrusts and to serve

as a yardstick for future comparison. We cannot judge that ten percent is a proper sample

size for improvement endeavors in other organizations, however.

Hgw Much Will the Baseline Cost?

We have invested approximately eighteen person-months in the baselining activities

focused on the GSFC software community. Our efforts first concentrated on the largest and

most software intensive Directorate at GSFC and then broadened to encompass all of the

GSFC, but at a lesser level of detail. As the data on page 14 shows, a cumulative six

person-months was used gathering insight using the integrated four method approach

previously discussed. This six months was preceded by two person-months of survey

development, testing, and refinement. We found the archiving investment to be extremely

important. This function helped to maintained order and organization amidst the inflow of

9

SEW Proceedings 409 SEL-93-003

large quantities of data. We estimate that about six person-months have been invested

extracting and deriving information and insight from the survey, roundtable, and interview

data. This function includes re_gnizing and dealing with data overlaps and gaps as well as

performing analyses and comparisons. A total of two person-months has been expended

so far packaging our results into two profile reports (one for the major software Directorate

and one for the GSFC overall) and into several briefings.

Page 14 concludes with a short synopsis of our next steps. We are now Wansitioning from

exclusive concentration on just gaining understanding to an effort balanced between

continued understanding activities and focused assessments and prototyped incremental

improvements.The software engineeringbaselining performed to date has highlighted

several process areas as promising candidates for improvement.

Training and standards are high on that attention list. Several comments in this regard may

be helpful. The GSFC training office has an excellent record of responding to managers'

requests for specific training classes. Our observations conclude, however, that a more

comprehensive software training activity may be cost-effective. We are interested in

examining the advantages and problems surrounding an integrated software engineering

training _ a curriculum that routinely prepares personnel for upcoming software

roles. We also want to explore whether training effectiveness can be improved by

expanding the delivery of training fa'om the traditional classroom to include reinforcement

mechanisms such as easy access to help and information from each person's office desktop

machine.

The standards area apparently requires a considerably different aplmmch from that used

within the GSFC to date. (Since we haven't completed our NASA-wide baselining, we

can't fully conclude that the same issue applies across all of the Agency, but our insight so

far leads us to think that it does.) Several observations are particularly relevant. First, the

existence of advocated software engineering processes and supporting standards is very

inconsistent. Few organizations that do software work have any recommended approach at

all despite the importance of software engineering to their existence and to the credibility of

their products. Second, within those few organizations that do have a recommended

software process and supporting standards, managers and staff either claim not to know of

the recommended approach or freely take broad license to tailor and selectively apply

elements of it. Related to this issue is the tendency for civil service personnel to require the

contractor community to follow a particular process and standards while they themselves

10

SEW Proceedings 410 SEL-93-003

know very little about it and exercise no similar discipline on their own software activities.

There is a distinct lack of ownership by the using community of processes and standards

imposed from outside their immediate organization. We think these interrelated issues sum

to the conclusion that most current approaches to developing, advocating, and using

software process and engineering standards simply do not help and instead actuaUy hinder,

frustrate, and waste resources. Since current software standards methods largely don't

work, our next steps in this part of the improvement program will be dual thrusts of

continued detailed understanding and prototyping of alternate techniques. A very promising

overaU approach is that represented by the three layer, iterative model Ineviously shown on

page 4. This technique basically plays back into the organization the methods and practices

the organization itself or a subset of the organization such as a particular project, has found

helpful. These "packaged" methods and practices are the organization's processes and

standards and since they are based on actual experience within the organization, they are

owned and used with much greater effectiveness.

Lessons We Learned

In summary, the understanding activity is a mandatory and continuing element of any

organizational software engineering improvement program. We have now completed the

initial understanding baseline for software across the 12,000 person GSFC community.

Several lessons from that work may be beneficial to others seeking to establish similar

baselines for their organization.

A primary lesson is to be objective. The purpose of the understanding activity is to learn

and not to judge that current practices are good or bad. As the understanding builds, a

change in perspective can occur to identify candidate areas for improvement, but the key is

that shift in perspective be based on facts rather than speculation.

It is important that insight be gained from personnel at all levels and roles within the

organization. We found that interacting initially with upper management was especially

important. Not only could the upper manager orient us to the types of work and the

responsibilities of the organization, but we also gained the manager's approval of our

efforts which in ttma helped gain time and attention from the staff within the organization.

Another benefit of starting with upper management was the important aspect of buy-in by

the upper manager to the concept of software engineering improvement. This acceptance

becomes especially important downstream when the initial understanding is achieved and

11

SEW Proceedings 411 SEL-93-003

the task of defining and experimenting with promising improvements gets underway.

Gaining multiple perspectives from personnel throughout the organization does come with

some problems though. The chief difficulty is recognizing and resolving overlaps in data

and insights.

Lesson 3 on page 15 recommends layering the baselining effort. In other words, gather

insight that is truly representative of the way the organization does its software work, but

go only into as much depth as is needed for the era'rent stage of the improvement effort. As

candidate improvement areas are identified, more indepth investigation can be done

concentrated on the aspects of that candidate area. As in any data gathering exercise, it is

very easy to become overwhelmed with data and not be able to discern from all the data the

useful information. Keeping a carefully organized archive helps, but the real key is to

maintain a perspective of "peeling away layers of insight" as is most useful to your stage of

improvement.

As the understanding builds, package the insight into some type of communicative

medium. We have used both briefings and reports (which we call "software engineering

proftles") as convenient repositories to store our insight and facilitate further discussion and

progress within the organization. To help these products mature, give members of the

organization opportunities to read and comment. This will likely be a challenging activity,

however, because your baselining work will have identified weaknesses and problems

which the organization may not want to hear or see on paper. Again, the support and

commitment of the upper managers to process improvement become important contributors

to the success of your efforts.

Finally, we have evolved to a com_n_on of four methods to gather and verify process

insight. Surveys work well ff administered in person, ff thoroughly tested for completeness

and consistency, and ff conducted by a single or at most very small team of personnel

knowledgeable about the kinds of work the organization performs. Roundtables are a

means of gathering in more subjective opinion and perspective. Reviewing selected

documentation and data and follow-up interviews serve as tools for verifying and clarifying

important items in your evolving understanding baseline.

12

SEW Proceedings 412 SEL-93-003

References

1. Software Enoneering and Assurance Plan. draft, July 23, 1993, NASA Headquarters

Office of Safety and Mission Quality.

2. profile of Software Within Code 500 at Goddard Space Flight Center. NASA Software

Engineering Program, December 1992.

3. profile of Software at the NASA Goddsrd Space Flight Center, NASA Software

Engineering Program, draft,December 1993.

13

SEW Proceedings 413 SEL-93-003

Profile of NASA Software Engineering:

Lessons Learned from Building the Baseline

Dana Hall

Science Applications International Corporation

Frank McGarry
NASA/Goddard Space Flight Center

Eighteenth Annnl
Software F__gineering Workshop

December 2, 1993

Topics

• Role of the Baseline in Software Process Improvement

• Core Data You Want to Capture

• What can be Captured?

• Techniques for Establishing the Baseline

• Lessons We Learned Assembling the GSFC/NASA Baselines

(2)

SEW Proceedings 414 SEL-93-003

Role of the Baseline in Process Improvement

Objectives -

1) Establish the Baseline
- Snapshot present attributes of the software itself (Software Product)
- Snapshot present software engineering practices (Software Process)

Basic objective is to understand; not to judge right or wrong

2) Baseline will be used to:

- Identify and define potential process improvements
- Make future comparisons to measure progress

Baselining Activity is Mandatory First Step of any Process
Improvement Program

(3/

Evolving to an Effective "Process Improvement" Environment

EXAMPLES

_ PACKAGING

• * Improved Training

Standards/policies
ITERATE _ • Guidebooks

/
/ _ _,o_or_m_hmq.o
I / I • ,n_c.o.sprocess
[/] .Compare test techniques (functional, reading, structural)

__ "dY//////////,_

.//////////////////////////////,: Relationship between development parameters
Y/"JJJJJJ//. Error/changes characteristics_

/e/s/o/'///ce and effort characteristi__

TIME

Key Ongoing Step is to Understand

• (4)

SEW Proceedings 415 SEL-93-003

Most Significant Baseline Data

Core Data you Want to Capture

Insight about the Application Domain
"Characteristics of the Problem Addressed"

Product Data

"End Item Characteristics"

• Process Data

"How is the End Item Developed and Maintained"

Environment Insight

"Supporting Tools and Infrastructure'

(5)

[

Core Data you Want to Capture

Product Data

* Amc_nl of software

- Being maintained
- Under development

• Code Characteristics
- Longevity

-Languages
-Reuse

-Productivity

• Cost of software
- Being maintaiaed
- Under development
- For sapport functions

• Error Characteristics

- Rates
- Classes

• What an organization does

• Total vs software staffing

Process Data

• Policies and Standards

-Inplace
-Followed

• Effort by Life-Cycle Phase

• Technologies applied
- Tools

- Methodolgies
- Specification practice

• Management practices
- Reviews

-Training
- Configuration Control

Environment Data

* Scope of compudng
re_ooroe

• Processor environment

Application Domain

• % Budget spent on software

• Organizationgoals

(6)

SEW Proceedings 416 SEL-93-003

33% of staff

work software

66% of the staff

does not work software

Toaal Software Staffing - 12,000

(civil servants & support contractors)

Percentage of Staff Devoted to Software

(7)

Gem_al Sq_s_: 15.5M $1.O_

GSFC presently has about 43 million source line,s of code

(8)

SEW Proceedings 417 S EL-93-003

Fortran
62% 4GLs,

Cobol,
Assembler,

Jovial,
Pascal
26%

Presently Operational
GSFC Software

C/C ++

1 I% Ada

<1%

Fot'tran
35%

4 GLs,
Cobol,

Assembl_r,

J Jovial.

Pascal
10%

C/C++

4_

Software Under
Development at GSFC

Ada

,_ 10%

!

Language Preferences
(9)

Resource Consumption by Development Phase
Typically at GSFC

°°I I

(io)

SEW Proceedings 418 SEL-93-003

What can be Captured?

Conflicts will exist between data you want to capture and what is available/quantifiable

Data availability is indicator of relative process maturity
of the organization

Accuracy takes long time and many projects (large, overlapping sample size)

Data you probably can collect:

Languages
Budgets (cost)
Amounts of software

This data may be accurate + 25%

Less tangible data (depending upon organization's process maturity)

Effort distribution by phase
Software longevity
Error statistics
Productivity
Investment in "overhead" functions (QA, CM, documentation, management)

Our experience is accuracy _+50%
(11)

Techniques for Establishing the Baseline

Apply combination of four methods:

- Administered surveys
- Informal roundtables
- Data and documentation review
- One-on-one interviews

Survey advice

1) Must prototype/test the survey instrument
2) Avoid descriptive entries; Make all responses quantifies or checkraarks
3) Use directed sampling

-- Start with senior managers:
* organization overview
* awareness of your activities
* pointers to "software pockets"

-- Sample the pockets
-- Cross-verify

4) Only one data gatherer or small team (max of 3 people)

5) Data gatherer(s) must know the organization

(12)

SEW Proceedings 419 SEL-93-003

How Many People Should You Talk To?

Code 500
at

GSFC

5000people
(civilservants

+

Support
Contractors)

1200
Software 120

People People

10%

Sample Size depends upon:

- Organization Uniformity/Heterogeneity
- How many software pockets (Approximately 20 "pockets" in Code 500)

(13)

How Much Will the Baseline Cost?

GSFC Baseline Experience

Survey Development/Testing:

Data Gathering (4 methods):

Archiving:

Data Analysis & Info Extraction:

Packaging:

2

6

2

6

2

lg person-months

Next Steps: Focus on Most Promising Improvement Areas
1. Training
2. Helpful Standards

Assess/Experiment and Package

(14)

SEW Proceedings 420 SEL-93-003

Lessons We Learned

I.

2.

.

4.

,

Be Objective _ Learn, Don't Qualify

Gather Perspective
(Cross verify)

Senior Management
Lower Management
Developers
Testers
Quality Assurance

Layer your Baselining-------_ Only go as deep as you need

Give the Organization Review Opportunity
(but don't compromise your findings)

Use Combination of Methods: Administered Surveys
Roundtables
Data Review
Interviews

(15)

SEW Proceedings 421 SEL-93-003

